Développement :

Propriétés de l'indice et application au calcul d'intégrale

Définition Soit $\gamma: I := [\alpha, \beta] \to \mathbb{C}$ un chemin fermé de \mathbb{C} . Soit $a \in \Omega := \mathbb{C} \setminus \gamma(I)$. On définit l'indice du chemin γ par rapport au point a par

$$\operatorname{Ind}_{\gamma}(a) = \frac{1}{2i\pi} \int_{\gamma} \frac{1}{z-a} dz.$$

Proposition 1. Ind_{γ} est une fonction à valeurs entières sur Ω .

- 2. Ind $_{\gamma}$ est constante sur chaque composante connexe de Ω .
- 3. Ind $_{\gamma}$ est nulle sur la composante connexe non bornée de Ω .

Démonstration. Soient γ , a comme ci-dessus.

1. On a
$$\operatorname{Ind}_{\gamma}(a) = \frac{1}{2i\pi} \int_{\gamma} \frac{1}{z-a} dz = \frac{1}{2i\pi} \int_{\alpha}^{\beta} \frac{\gamma'(z)}{\gamma(z)-a} dz$$
.

De plus, $\forall \omega \in \mathbb{C}$, ω est un entier ssi $\omega = 2ik\pi$ ie ssi $e^{\omega} = e^{2ik\pi} = 1$.

Posons $\varphi(t) := \exp\left(\int_{\alpha}^{t} \frac{\gamma'(z)}{\gamma(z) - a} dz\right), t \in [\alpha, \beta]$. On peut donc reformuler le problème : Ind_{\gamma} est un entier ssi $\varphi(\beta) = 1$. Montrons donc que $\varphi(\beta) = 1$.

 φ est dérivable comme composée de fonctions dérivables, de dérivée

$$\varphi'(t) = \frac{\gamma'(t)}{\gamma(t) - a} \exp\left(\int_{\alpha}^{t} \frac{\gamma'(z)}{\gamma(z) - a} dz\right) = \frac{\gamma'(t)\varphi(t)}{\gamma(t) - a},$$

 $\forall t \in [\alpha, \beta]$ sauf éventuellement en un nombre fini de points où γ ne serait pas dérivable; on note S l'ensemble de ces points.

La fonction $t \mapsto \frac{\varphi(t)}{\gamma(t)-a}$ est continue sur $[\alpha,\beta]$, de dérivée :

$$\left(\frac{\varphi(t)}{\gamma(t)-a}\right)' = \frac{\varphi'(t)(\gamma(t)-a)-\varphi(t)\gamma'(t)}{(\gamma(t)-a)^2}
= \frac{\varphi'(t)}{\gamma(t)-a} - \frac{1}{\gamma(t)-a} \cdot \frac{\varphi(t)\gamma'(t)}{\gamma(t)-a}
= \frac{\varphi'(t)}{\gamma(t)-a} - \frac{\varphi'(t)}{\gamma(t)-a}
= 0.$$

Ainsi, la dérivée de $\frac{\varphi}{\gamma - a}$ est nulle sur $[\alpha, \beta] \setminus S$, et comme S est un ensemble fini, $t \mapsto \frac{\varphi(t)}{\gamma(t) - a}$ est constante sur $[\alpha, \beta]$.

Or, en
$$\alpha$$
, on a $\frac{\varphi(\alpha)}{\gamma(\alpha) - a} = \frac{1}{\gamma(\alpha) - a}$, donc, $\forall t \in [\alpha, \beta]$, $\frac{\varphi(t)}{\gamma(t) - a} = \frac{1}{\gamma(\alpha) - a}$, ie $\varphi(t) = \frac{\gamma(t) - a}{\gamma(\alpha) - a}$.

De plus, comme γ est fermé, $\gamma(\alpha) = \gamma(\beta)$ et donc

$$\varphi(\beta) = \frac{\gamma(\beta) - a}{\gamma(\alpha) - a} = \frac{\gamma(\beta) - a}{\gamma(\beta) - a} = 1.$$

Conclusion : $\operatorname{Ind}_{\gamma}(a) \in \mathbb{Z}$.

- 2. L'application $\operatorname{Ind}_{\gamma}:\Omega\to\mathbb{Z}$ est continue. Comme l'image d'un ensemble connexe par une application continue est connexe, $\operatorname{Ind}_{\gamma}$ est constante sur chaque composante connexe de Ω .
- 3. On a $|\operatorname{Ind}_{\gamma}(a)| \leq \frac{1}{2\pi} \int_{\alpha}^{\beta} \frac{|\gamma'(z)|}{|\gamma(z) a|} dz$.

Prenons a dans la composante connexe non bornée de Ω . On peut faire $|a| \to +\infty$, et par interversion limite intégrale, on a $\lim_{|a| \to +\infty} \operatorname{Ind}_{\gamma}(a) = 0$, donc $\operatorname{Ind}_{\gamma}(a) = 0$.

Lemme Soit γ le cercle de centre 0 et de rayon R parcouru une fois dans le sens direct. Alors $\operatorname{Ind}_{\gamma}(a) = \left\{ \begin{array}{cc} 1 & \operatorname{si} & |a| < R \\ 0 & \operatorname{si} & |a| > R \end{array} \right.$

 $D\'{e}monstration$. Ici, Ω n'a que deux composantes connexes : l'intérieur du cercle, et l'extérieur du cercle qui est celle non bornée.

On a donc déjà le résultat $\operatorname{Ind}_{\gamma}(a) = 0$ si |a| > R, par le point 3 de la proposition.

Pour l'intérieur du cercle, comme Ind_γ est constante sur cette composante connexe, il suffit de faire le calcul pour 0 :

$$\operatorname{Ind}_{\gamma}(0) = \frac{1}{2i\pi} \int_{\gamma} \frac{1}{z} dz$$

$$= \frac{1}{2i\pi} \int_{0}^{2\pi} \frac{iRe^{it}}{Re^{it}} dt$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} dt$$

$$= 1.$$

Application Soit γ_R le cercle de centre 0 et de rayon R parcouru une fois dans le sens direct.

Calculons $\int_{\gamma_R} \frac{1}{2z^2 - 5z + 2} dz$ en fonction de R. Posons $f(z) := \frac{1}{2z^2 - 5z + 2}$. Alors f a deux pôles, $\frac{1}{2}$ et 2; on peut donc réécrire $f(z) = \frac{1}{2\left(z - \frac{1}{2}\right)(z - 2)}$.

Puis, par le théorème des résidus, on a

$$\int_{\gamma_R} f(z)dz = 2i\pi \left(\operatorname{Res}_f\left(\frac{1}{2}\right) \operatorname{Ind}_{\gamma_R}\left(\frac{1}{2}\right) + \operatorname{Res}_f(2) \operatorname{Ind}_{\gamma_R}(2) \right).$$

•
$$\operatorname{Res}_f\left(\frac{1}{2}\right) = \lim_{z \to \frac{1}{2}} \left(z - \frac{1}{2}\right) f(z) = \frac{1}{2\left(\frac{1}{2} - 2\right)} = -\frac{1}{3}.$$

Res_f(2) =
$$\lim_{z \to 2} (z - 2) f(z) = \frac{1}{2(2 - \frac{1}{2})} = \frac{1}{3}$$
.

• Si $R < \frac{1}{2}$: d'après le lemme, $\operatorname{Ind}_{\gamma_R}\left(\frac{1}{2}\right) = \operatorname{Ind}_{\gamma_R}(2) = 0$. Donc

$$\int_{\gamma_R} f(z)dz = 0.$$

Si $\frac{1}{2} < R < 2$: Ind $_{\gamma_R} \left(\frac{1}{2} \right) = 1$ et Ind $_{\gamma_R} (2) = 0$. Donc

$$\int_{\gamma_R} f(z) dz = 2i\pi \left(-\frac{1}{3} \times 1 + \frac{1}{3} \times 0 \right) = -\frac{2i\pi}{3}.$$

Si $R>2: \operatorname{Ind}_{\gamma_R}\left(\frac{1}{2}\right)=\operatorname{Ind}_{\gamma_R}(2)=1.$ Donc

$$\int_{\gamma_R} f(z) dz = 2i\pi \left(-\frac{1}{3} \times 1 + \frac{1}{3} \times 1 \right) = 0.$$